
Enhancing Document Exploration with OLAP

Zhibo Chen

University of Houston

Houston, TX, USA

Carlos Garcia-Alvarado

University of Houston

Houston, TX, USA

Carlos Ordonez

University of Houston

Houston, TX, USA

Abstract—Finding relevant documents in digital libraries has
been a well studied problem in information retrieval. It is not
uncommon to see users browsing digital collections without
having a clear idea of the keyword search that they should
perform. However, we believe that such initial query search is
not totally independent from the target search. Therefore, we
use these initial document selections to further explore these
documents. In the following demonstration, we exploit On-
line Analytical Processing (OLAP) for knowledge discovery in
digital collections to achieve query refinement. Such refinement
is the result of applying a traditional ranking technique, based
on the vector space model, selecting the top keywords in the
resulting subset of documents, and then displaying certain
cuboids of the keywords. Based on these cuboids, which are
ranked by their frequency, the users can select a query that
can better represent their actual target search. We show
that this document exploration can be done efficiently within
the DBMS and exploit in-database extensions, such as User-
Defined Functions, as well as standard SQL. Additionally, we
demonstrate a novel approach to obtaining query refinement
through OLAP data cubes.

Keywords-OLAP;Information Retrieval;UDF;

I. INTRODUCTION

Information retrieval is a vast field of research whose main

task is centered on returning relevant documents to users and

has an implicit knowledge discovery task in documents and

text. One of the pillars of this field involves the retrieval

of documents containing user-defined keywords. Such area

generally includes the exploration of stored documents and

text to resolve a user-defined query. These filtered docu-

ments can also be ranked according to a variety of scoring

functions such as the vector space model (VSM). There also

exists a variety of features, such as phrase completion and

suggestions, that assist the users in selecting the correct set

of keywords to best narrow down the documents returned.

The belief is that users will often start their searches with

naive queries, which implies that the selection of keywords

may not be entirely related to the target search. Hence the

result can often return an overwhelming amount of hits and

a low number of relevant documents. Subsequent searches

should narrowed down the search space to be in more

manageable levels for the users to browse. There exists a

variety of features that have been developed to assist the

This research work was supported by NSF grants CCF 0937562 and IIS
0914861.

users in creating more specific queries. Features such as

automatic completion and keyword suggestions can often

help users who are unsure of the exact query to run. In this

paper, we propose the development of a feature that can

provide users with additional possible queries by retrieving

popular keywords from the current search space. In other

words, once users have queried a set of documents, we will

provide alternative queries based on information extracted

from the reduced document space.

To provide such features, we exploit On-Line Analytical

Processing (OLAP) to build data cubes of possible key-

words. OLAP is a set of exploratory database techniques that

allow the user to efficiently retrieve specific aggregations [3].

OLAP users often try to find interesting results by analyzing

subsets of dimensions, which can be anything from medical

factors to document keywords. The underlying structure of

OLAP is the dimension lattice. While OLAP is generally

quite slow when processed within the DBMS, optimizations

such as cube precomputation and User-Defined Function

(UDF) can help greatly improve performance. For this paper,

we apply the exploration power of OLAP to documents in

order to retrieve the most popular keywords, which to the

best of our knowledge is one of the first attempts to use

OLAP as a backbone for query refinement.

The main motivation for our research is to assist users

in producing queries that are more likely to return what

they are really searching for. We believe that the correlation

of an initial query search, can be used to produce a list

of alternative popular keywords in the selected documents.

Such set of keywords can greatly help the users to define

more specific or more efficient search queries. The novelty

of our research lies in our utilization of the benefits of OLAP

to generate such a set of keywords. The various aggregation

levels of OLAP also allows us to return alternative queries

that consists of different number of keywords.

In this paper, Section II describes, in detail, the techniques

that were employed while Section III provides a description

of the demonstration that we would present.

II. TECHNICAL DETAIL

In this section, we will first explain how the documents

are searched and ranked within a DBMS. Next, we show

how OLAP queries can be used to generate popular key-

words. Finally, we provide details on how the two areas are

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.37

1407

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.37

1407

integrated into one system.

A. Document Ranking

Let C be a collection of N documents {d1, d2, ..., dn}.

Each document di or query q is composed of words to

which we apply the Porter Algorithm to obtain a reduced

set of stemmed-words, which we are going to identify as

t. The Vector Space Model (VSM) computes the similarity

of a function based on the cosine of the angle of the

query vector and each document (Sim(q, di) = ~q·~di

‖~q‖‖~di‖
).

During the scoring phase, the keywords are stored in a large

frequency table, by relating the document id, the keyword,

and the frequency count for each of them. Then we compute

the weight of a keyword in the collection wt given by

log(N/cf(t)) and store them in an idf table. Finally, we

compute the norm of each document. For the ranking phase,

we have to compute the document frequency of a keyword

in a document f(t, fi) using summarization such as the

number of documents containing a keyword in the collection

df(t), the total count of keywords in a document |d|, the

frequency of a keyword in a document tf(t), the frequency

of a keyword in the collection cf(t), and the norm of a

relation (vector keyword weights) ||di||. The ranking of a

document is represented by a similarity function Sim(q, di).

B. OLAP Data Cube

We will now provide a more detailed analysis of how

OLAP techniques can be performed using UDFs as well as

how they can be altered to work with documents. The goal

of this portion of our research is to perform OLAP on top

of a naive database management system, without the need

to alter any of the source code [2]. For the remainder of this

section, we will consider a typical OLAP dataset as having

n records, d cube dimensions, and e measure attributes. To

generate an OLAP data cube, we must have at least one

record and one dimension while there does not necessarily

need a measure. A dimensional lattice is the structure that

represents all the subsets of dimensions and is composed of

nodes, which represent a combination of dimensions.

For OLAP, the queries generally involve either a retrieval

of information or an aggregation of dimensions. Operations

such as slicing, dicing, and pivots [6] can be considered

retrievals because they normally involve gathering data from

computed portions of the lattice. On the other hand, ag-

gregations include operations such as drill down and roll

up, which requires the computation of additional nodes

in the lattice. These operations are used to traverse the

large dimensional lattice in preparation for the retrieval

queries. For small dimensionality, it is often recommended

to compute the entire dimensional lattice at once and then

only use retrieval operations to obtain information.

For our research, we use OLAP to generate a keyword

data cube in which each node of the lattice would represent

one specific combination of keywords. The data cube would

store both the number of occurrences of the combination in

the document space as well as the total number of documents

in which the set of keywords appears. For example, suppose

the node “Water Pollutant” stores the values 100 and 10,

then we know that in our filtered document space, this

combination of keywords appears a total of 100 times in

10 different documents. The first stored value represents the

minimum frequency of the two keywords. For example, if

”Water” appears 5 times in one document while ”Pollutant”

appears only 3 times in the same document, then we consider

the pair ”Water Pollutant” as having a frequency of 3 in this

document. In general, the rule is: minq1, q2, ..., qj where qj
represents the frequency of the keyword j in a particular

document. The second store value represents the total num-

ber of documents that contains the keywords. Thus, the p-th

level of the lattice would contain all possible combinations

of p keywords. For keywords, the dimensionality is often too

high to generate the entire lattice at once. At the same time,

presenting all the possible combinations of keywords would

give the user too much information to view at once. As a

result, we perform a user-driven traversal of the dimensional

lattice. In this process, we first provide the user with the set

of all pairs of keywords, level 2 of the dimensional lattice,

found within the document space. From here, the user can

activate further calculations by drilling down the lattice. For

example, suppose the user wants to drill into the keywords

“New York”, then our application would calculate only those

nodes involving these two keywords at the next level to form

sets of three keywords, such as “New York State”. In this

manner, we avoid computing large portions of the lattice at

once while still providing the user with the flexibility to drill

as far into the lattice as needed.

Currently, we have three main ways in which we can

execute the OLAP queries. The pure SQL approach involves

the use of standard SQL to generate the required nodes of

the lattice. In general, this approach requires one aggregation

per node of the lattice. For the retrieval operations, the

SQL requires a straight Select statement with the needed

dimensions while for aggregation operations, a Group-By

statement is required to perform the aggregation. In the case

that multiple nodes of a lattice needs to be computed, then

one aggregation would be performed for each node. Further

details on the pure SQL approach can be found in [5].

1) UDF Methods: The UDF approach involves pushing

as much of the calculations into main memory as possible.

For this method, the main backbone is the storage of a

data structure that needs to represent the dimensional lattice

and is held in main memory for fast updates. Currently,

we have implemented two different data structures for use

with the UDF approach. The first is a lattice-based structure

[1] that has been altered to work with keywords. In the

original design, a two-tiered system was used to store both

node information and specific group data. For keywords, the

second tier is not required since each node contains only one

14081408

possible value. As a result, we reduce the structure to only

contain one-tier, each of which represents a specific node

within the dimensional lattice. We also added additional

links to provide quick navigation between the various sets

of keywords. These links not only point from one level of

the lattice to another, but also within. For example, the node

“New York” would not only connect to next level nodes such

as “New York City”, but also same level nodes containing

one of the keywords, such as “New Jersey”. The power of

this structure is that only one pass of the dataset is required

to produce the required nodes. This is accomplished by

updating all appropriate nodes for each record.

In the past, the only common UDF types were scalar and

aggregation, both of which only requires a single value. For

this paper, we used multi-statement table-valued functions,

which allow for the return of result sets. This is extremely

useful because it allows us to avoid additional intermediate

steps involving the transformation of the data structures into

a single string. With the TVF, we can read entire datasets,

create and update the data structure, and return entire tables.

2) OLAP Network: We also created a graphical repre-

sentation of the OLAP data cube in the form of an OLAP

network, similar to [4]. In its basic form, each vertex

represents a specific keyword while each edge connect two

vertices that form a pair. The weight or thickness of the

edges depends on the strength of the link between the two

keywords. In our case, it can be changed to represent either

occurrences or documents. For example, an edge connecting

“water” to “arsenic” with a value of 10 can be interpreted

as ten documents within the document space contains both

of the keywords. For the more complex cases of more

than two keywords in a set, then additional vertices are

required to distinguish the sets. In such cases, the number

of vertices depends on the number of keywords and the

level of the lattice that we are observing. We also provided

various filtering methods by which the user can reduce

the number of edges. These filters include hiding certain

vertices, applying a threshold to the smallest number of

occurrences or documents to show, and also changing the

thickness of the edges by altering the thickness factor.

C. Integration of OLAP with Searching

Let us now observe how OLAP queries can be integrated

with document searching to provide users with additional

information. Within the DBMS, the documents and key-

words are stored in a transactional format, table C, with each

record containing the document id, the keyword, and the

number of occurrences. This large table C is reduced in size

through the use of the vector space model to only keep the

documents that are similar to the search keyword(s). Once

the document space is reduced,a list of the k most popular

single keywords can be obtained. This value is chosen by the

user with a default of 30 keywords. This can be implemented

by grouping on all the keywords in the reduced document

table, C1 and retrieving only the top k keywords.

Once the keyword list has been decided, we use a UDF

to simultaneously retrieve the frequency of these keywords

in each document and pivot the entire table. The input table

for the UDF, C2, is a further reduced version of C1 because

of the removal of all keywords not in the top k. For this

UDF, only one pass of C2 is needed and the resulting fact

table, F , contains k+1 columns. Only one pass is required

because we can keep track of each document and the values

of the keywords as we are progressing through the document

table. Once F is produced, we can run OLAP on this table to

initially generate the 2nd level of the lattice. Should the user

wish to drill down, the same F is used to create those new

nodes. In fact, the fact table only needs to be regenerated

once the user chooses to perform another keyword search.

Once OLAP has generated the required lattice for a

particular set of documents, the manner in which the results

are displayed according to a sorting criteria. There are two

measures by which the keyword sets can be ranked: total

frequency and total documents. The total frequency measure

will rank the keyword sets based on the number of times

they appear in all the documents, which the total documents

measure will sort based on those results that appear in

the most documents. Even though this demonstration only

incorporates these two sorting criteria, more complex metrics

can be used. The additional data required by these more

complex methods can efficiently stored and retrieved through

the use of OLAP. For example, additional metrics may take

into account the size of the document, which can then be

used to normalize the appearance of a keyword set in a single

document. An average can then be applied on all documents

to obtain the average normalization. In this case, we would

need to store the size of the documents in the lattice

III. SYSTEM DEMONSTRATION

In this section, we will present a demonstration of our

application (see Figure 1). Our goal for this demonstration

is to show the audience that using OLAP techniques on

the documents’ keywords will allow the user to efficiently

refine searches by displaying information that cannot be

obtained from a straight search through the dataset. We

developed a Web application using ASP .NET and User-

Defined Functions, where the user is capable of refining

their searches based on the top-k sets of keywords. The

digital collection that we will use during this demonstration

is a Water Pollution Dataset from the Texas Commission

on Environmental Quality, which was pre-processed to have

around 10,000 documents. We do not require Internet access

to present our demonstration. Our demonstration will be

separated into two parts: (1) the enhanced searching process

provided by OLAP and (2) a graphical way to explore the

keywords within the document space.

14091409

Cube Exploration Lattice Generation & Options

Figure 1. Document Exploration Tool

In the first section, we will demonstrate how our ap-

plication is able to generate the alternative keywords at

runtime by searching for various keywords and observing the

execution time. For example, we will search for “water” and

observe the speed at which the application will reduce the

document space and provide the OLAP results. We will show

how a search for “water” will bring too many hits for the

user to analyze, but the OLAP suggestions can help narrow

the documents. We can also show how the user can sort the

OLAP suggestions by number of occurrences or number of

documents. The appropriate sort to use would depend on the

goal of the user. For now, the suggestions show that “water

arsenic” is one of the top keyword pairs. We then initiate a

search for “water arsenic” and show how the number of

documents returned has been reduced. Because we have

performed a new keyword search, the OLAP suggestions

have also been recomputed to show the alternative pairs of

keywords based on the new document space.

For the second portion of the demonstration, we will

ignore the keyword searching and only focus on how a

user can navigate through the sets of keywords of the

document space. For example, we will again search for

“water” and receive the pairs of keywords as sorted by

number of occurrences. We can then activate our OLAP

network to graphically view these pairs of keywords. Once

again, the vertices represent each keyword and the edge

between each pair of vertex represents the weight of the

connection. This weight can represent either the occurrences

or documents, depending on user selection. In addition, we

will also show how one can drill down or roll up based on

a chosen set of keywords. For example, we can choose the

“water” and “arsenic” nodes and have the application drill

down on these two nodes. The result is a network showing

all the keywords that form triples with these two nodes as

well as the appropriate edges. The power of this graphical

option is that it allows the user to quickly navigate among

the keyword sets to gather more knowledge regarding the

appropriate type of keyword search to execute.

For future work, we want to improve the data structure

that we are currently using to store the keyword information

in the DBMS. We believe that we can improve efficiency by

using even smaller data structures. Also, we want to add con-

text to both the keyword search and the OLAP suggestions.

Finally, we want to re-use and update materialized cuboids

for query refinement by not having to recompute all the

cuboids every time a new keyword search is performed.

ACKNOWLEDGMENT

We thank Mario Navas for providing invaluable assistance

in the implementation of our application.

REFERENCES

[1] Z. Chen and C. Ordonez. Efficient OLAP with UDFs. In
DOLAP, pages 41–48, 2008.

[2] C. Garcia-Alvarado, Z. Chen, and C. Ordonez. OLAP-based
query recommendation. In ACM CIKM, 2010.

[3] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
Cube: A Relational Aggregation Operator generalizing group-
by, cross-tab and sub-total. In ICDE Conference, pages 152–
159, 1996.

[4] K. Morfonios and G. Koutrika. OLAP cubes for social
searches: Standing on the shoulders of giants. WebDB, 2008.

[5] C. Ordonez and Z. Chen. Evaluating statistical tests on OLAP
cubes to compare degree of disease. IEEE Transactions on
Information Technology in Biomedicine, 13(5):756–765, 2009.

[6] C. Ordonez and Z. Chen. Horizontal aggregations in SQL to
prepare data sets for data mining analysis. IEEE Transactions
on Knowledge and Data Engineering, 2011.

14101410

